Name \qquad

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) A boat can move at $30 \mathrm{~km} / \mathrm{h}$ in still water. How long will it take to move 12 km upstream in a river flowing $6.0 \mathrm{~km} / \mathrm{h}$?
A) 22 min
B) 20 min
C) 30 min
D) 24 min
2) If you are driving $72 \mathrm{~km} / \mathrm{h}$ along a straight road and you look to the side for 4.0 s , how far do you travel during this inattentive period?
A) 20 m
B) 18 m
C) 80 m
D) 40 m
3) A motorist travels 160 km at $80 \mathrm{~km} / \mathrm{h}$ and 160 km at $100 \mathrm{~km} / \mathrm{h}$. What is the average speed of the motorist for this trip?
A) $90 \mathrm{~km} / \mathrm{h}$
B) $89 \mathrm{~km} / \mathrm{h}$
C) $91 \mathrm{~km} / \mathrm{h}$
D) $84 \mathrm{~km} / \mathrm{h}$
4) An airplane increases its speed from $100 \mathrm{~m} / \mathrm{s}$ to $160 \mathrm{~m} / \mathrm{s}$, at the average rate of $15 \mathrm{~m} / \mathrm{s}^{2}$. How much time does it take for the complete increase in speed?
A) 0.058 s
B) 17 s
C) 4.0 s
D) 0.25 s
5) A car starting from rest moves with constant acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ for 10 s , then travels with constant speed for another 10 s , and then finally slows to a stop with constant acceleration of -2.0 $\mathrm{m} / \mathrm{s}^{2}$. How far does it travel?
A) 300 m
B) 200 m
C) 500 m
D) 400 m
6) A bullet shot straight up returns to its starting point in 10 s . What is the initial speed of the bullet?
7) \qquad
8) \qquad
9) \qquad
A) $98 \mathrm{~m} / \mathrm{s}$
B) $49 \mathrm{~m} / \mathrm{s}$
C) $9.8 \mathrm{~m} / \mathrm{s}$
D) $25 \mathrm{~m} / \mathrm{s}$

FIGURE 2-1
7) In Fig. 2-1, what is the velocity at $t=2.5 \mathrm{~s}$?
7)
A) 0
B) $20 \mathrm{~m} / \mathrm{s}$
C) $10 \mathrm{~m} / \mathrm{s}$
D) $-40 \mathrm{~m} / \mathrm{s}$
8) Your motorboat can move at $30 \mathrm{~km} / \mathrm{h}$ in still water. How much time will it take you to move 12 km
8) \qquad downstream, in a river flowing at $6.0 \mathrm{~km} / \mathrm{h}$?
A) 20 min
B) 30 min
C) 22 min
D) 24 min

FIGURE 2-1
9) In Fig. 2-1, what is the average velocity from 0 to 6.0 s?
A) $-40 \mathrm{~m} / \mathrm{s}$
B) 0
C) $10 \mathrm{~m} / \mathrm{s}$
D) $20 \mathrm{~m} / \mathrm{s}$
10) In Fig. 2-1, what is the average velocity from 0 to 4.0 s ?
A) 0
B) $-40 \mathrm{~m} / \mathrm{s}$
C) $20 \mathrm{~m} / \mathrm{s}$
D) $10 \mathrm{~m} / \mathrm{s}$
11) In Fig. 2-1, what is the velocity at $t=5.5 \mathrm{~s}$?
A) $10 \mathrm{~m} / \mathrm{s}$
B) $-40 \mathrm{~m} / \mathrm{s}$
C) $20 \mathrm{~m} / \mathrm{s}$
D) 0
12) In Fig. $2-1$, what is the velocity at $t=4.0 \mathrm{~s}$?
A) $-40 \mathrm{~m} / \mathrm{s}$
B) $10 \mathrm{~m} / \mathrm{s}$
C) 0
D) $20 \mathrm{~m} / \mathrm{s}$
13) A pilot drops a bomb from a plane flying horizontally at a constant speed. Neglecting air
13) \qquad resistance, when the bomb hits the ground the horizontal location of the plane will
A) be in front of the bomb.
B) depend on the speed of the plane when the bomb was released.
C) be over the bomb.
D) be behind the bomb.

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

Copsright \$2006 Pearson Prentice Hal, Ine:

FIGURE 3-35

14) A projectile is shot from the edge of a cliff 125 m above ground level with an initial speed of $65.0 \mathrm{~m} / \mathrm{s}$ at an angle of 37.0° with the horizontal, as shown in Fig. 3-35. (a) Determine the time taken by the projectile to hit point P at ground level. (b) Determine the range X of the projectile as measured from the base of the cliff. At the instant just before the projectile hits point P, find (c) the horizontal and vertical components of its velocity, (d) the magnitude of the velocity, and (e) the angle made by the velocity vector with the horizontal. (f) Find the maximum height above the cliff top reached by the projectile.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

15) Which of Newton's laws best explains why motorists should buckle-up?
B) the first law
A) the law of gravitation
D) the second law

FIGURE 2-1
16) In Fig. 2-1, what is the velocity at $t=1.0 \mathrm{~s}$?
16) \qquad
17) \qquad
A) constant acceleration
B) constant velocity
C) constant speed
D) increasing acceleration
18) A horizontal force accelerates a box from rest across a horizontal surface (friction is present) at a constant rate. The experiment is repeated, and all conditions remain the same with the exception that the horizontal force is doubled. What happens to the box's acceleration?
A) It increases to exactly double its original value.
B) It increases somewhat.
C) It increases to less than double its original value.
D) It increases to more than double its original value.
19) Two toy cars (16 kg and 2.0 kg) are released simultaneously on an inclined plane that makes an angle of 30° with the horizontal. Make a statement which best describes their acceleration after being released.
A) Both cars accelerate at the same rate.
B) The $16-\mathrm{kg}$ car accelerates 8 times faster than the $2.0-\mathrm{kg}$ car.
C) The $2.0-\mathrm{kg}$ car accelerates 8 times faster than the $16-\mathrm{kg}$ car.
D) none of the above
20) Consider a particle moving with constant speed such that its acceleration of constant magnitude is always perpendicular to its velocity.
A) It is moving in a circle.
B) It is moving in a straight line.
C) It is moving in a parabola.
D) None of the above is definitely true all of the time.
21) Consider a small satellite moving in a circular orbit (radius r) about a spherical planet (mass M).
20) \qquad Which expression gives this satellite's orbital velocity?
A) $(\mathrm{GM} / \mathrm{r})^{1 / 2}$
B) $v=G M / r$
C) $\mathrm{GM} / \mathrm{r}^{2}$
D) $\left(\mathrm{GM} / \mathrm{r}^{2}\right)^{1 / 2}$

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

22) Two identical arrows, one with twice the speed of the other, are fired into a bale of hay. Assuming the hay exerts a constant frictional force on the arrows, the faster arrow will penetrate how much farther than the slower arrow? Explain.

Cogyigtte 2005 Pearson Prentice Hall inc.
FIGURE 6-36
23) A $330-\mathrm{kg}$ piano slides 3.6 m down a 28° incline and is kept from accelerating by a man who is pushing back on it parallel to the incline (Fig. 6-36). The effective coefficient of kinetic friction is 0.40 . Calculate: (a) the force exerted by the man, (b) the work done by the man on the piano, (c) the work done by the friction force, (d) the work done by the force of gravity, and (e) the net work done on the piano.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

24) A handball of mass 0.10 kg , traveling horizontally at $30 \mathrm{~m} / \mathrm{s}$, strikes a wall and rebound at $24 \mathrm{~m} / \mathrm{s}$. What is the change in the momentum of the ball?
A) $72 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
B) $0.60 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
C) $5.4 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
D) $1.2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
25) A $3.0-\mathrm{kg}$ object moves to the right with a speed of $2.0 \mathrm{~m} / \mathrm{s}$. It collides in a perfectly elastic collision
26) \qquad
\qquad
27) \qquad with a $6.0-\mathrm{kg}$ object moving to the left at $1.0 \mathrm{~m} / \mathrm{s}$. What is the total kinetic energy after the collision?
A) 3.0 J
B) 6.0 J
C) 0 J
D) 9.0 J

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

26) A $70-\mathrm{cm}$ diameter wheel accelerates uniformly about its center from 130 rpm to 280 rpm in 4.0 s . Determine (a) its angular acceleration, and (b) the radial and tangential components of the linear acceleration of a point on the edge of the wheel 2.0 s after it had started accelerating.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
27) What condition or conditions are necessary for rotational equilibrium?
27) \qquad
A) $\Sigma \mathrm{T}=0$
B) $\Sigma F_{x}=0, \Sigma F_{y}=0$
C) $\Sigma \mathrm{F}_{\mathrm{X}}=0, \Sigma \mathrm{~T}=0$
D) $\Sigma F_{X}=0$

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

Cogriotte 2005 Pessenn Prentice Hal, Inc.
FIGURE 9-42
28) Calculate the forces F_{A} and F_{B} that the supports exert on the diving board of Fig. 9-42 when a 58 kg person stands at its tip. (a) Ignore the weight of the board. (b) Take into account the board's mass of 35 kg . Assume the board's CG is at its center.

FIGURE 9-45
29) Find the tension in the two cords shown in Fig. 9-45. Neglect the mass of the cords, and assume that the angle θ is 33° and the mass m is 170 kg .

FIGURE 8-47

30) Two masses, $m_{1}=18.0 \mathrm{~kg}$ and $m_{2}=26.5 \mathrm{~kg}$, are connected by a rope that hangs over a pulley (as in Fig. 8-47). The pulley is a uniform cylinder of radius 0.260 m and mass 7.50 kg . Initially, m_{1} is on the ground and m_{2} rests 3.00 m above the ground. If the system is now released, use conservation of energy to determine the speed of m_{2} just before it strikes the ground. Assume the pulley if frictionless.
